FLUIDIZATION

Fluidization

When a fluid is passed upwards through a bed, the pressure drop is
the same as that for downward flow at relatively low rates. When,
however, the frictional drag on the particles becomes equal to their
apparent weight, that is the actual weight less the buoyancy force, the
particles become rearranged thus offering less resistance to the flow of
fluid and the bed starts to expand with a corresponding increase in
voidage. This process continues with increase in velocity, with the total
frictional force remaining equal to the weight of the particles, until the
bed has assumed its loosest stable form of packing. If the velocity is then
increased further, the individual particles separate from one another and
become freely supported in the fluid. At this stage, the bed is described as

fluidized.
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Schematic diagram of fluidization

- At low gas velocities the drag force is to small to lift the bed,
which remains fixed. Increasing gas velocity causes solids to move
upward and create fluid bed. Depending on the velocity of gas we
can distinguish different modes of fluidization (Fig..2) from
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bubbling fluidization, through turbulent and fast fluidization modes
up to pneumatic transport of solids.

FIGURE 1.2: Fluidization type depending on gas velocity
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- Another important issue concerning the fluidization process is
pressure drop through a fixed bed. The Figure below presents
changes in pressure drop with changing gas velocity.
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- The velocity at which the pressure is stabilized is called minimum
fludization velocity.

[n a fluidised bed, the total frictional force on the particles must equal the effective
weight of the bed. Thus, in a bed of unit cross-sectional area, depth /, and porosity e, the
additional pressure drop across the bed attributable to the layout weight of the particles
Is given by:

~AP=(I-e)(ps = p)lg (6.1)

where: g is the acceleration due to gravity and
ps and p are the densities of the particles and the fluid respectively.

If flow conditions within the bed are streamline, the relation between fluid velocity .,
pressure drop (—AP) and voidage e is given, for a fixed bed of spherical particles of
diameter d, by the Carman-Kozeny equation (4.12a) which takes the form:

3 2
0, = 0.0055( ‘ ) (_APd ) 6.2)
(1-e)? ul

For a fluidised bed, the buoyant weight of the particles is counterbalanced by the frictional
drag. Substituting for —A P from equation 6.1 into equation 6.2 gives:

3 2.
ufzo.oo:'a:'a(le )(d (e p)g) 63)
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6.1.3. Minimum fluidising velocity

As the upward velocity of flow of fluid through a packed bed of uniform spheres is
increased, the point of incipient fluidisation is reached when the particles are just supported
in the fluid. The corresponding value of the minimum fluidising velocity (i) is then
obtained by substituting e, into equation 6.3 to give:

3
¢\ 4o —p)g

= 0.0055 ]
— Enf [

(6.4)

Since equation 6.4 is based on the Carman—Kozeny equation, it applies only to condi-
tions of laminar flow, and hence to low values of the Reynolds number for flow in the
bed. In practice, this restricts its application to fine particles.

The value of e,,¢ will be a function of the shape, size distribution and surface properties
of the particles. Substituting a typical value of 0.4 for e,,; in equation 0.4 gives:

d*(p; - p)g)
m

When the flow regime at the point of incipient fluidisation is outside the range over
which the Carman-Kozeny equation is applicable, it is necessary to use one of the more
general equations for the pressure gradient in the bed, such as the Ergun equation given
in equation 4.20 as:

—AP (1 —e)?\ [puc (1—e)\ [ pus :
T:]SO(T)(dE)H'?S( 5 )(7) (6.6)

where d is the diameter of the sphere with the same volume:surface area ratio as the
particles.

Substituting e = e,y at the incipient fluidisation point and for —A P from equation 6.1,
equation 6.6 is then applicable at the minimum fluidisation velocity u,,¢. and gives:

1_-m 2 m 1 — m p”i
(l—emf)(ps—p)g:wo(( 3"f))(“;2f)+1.75(( < f))( df)

(1) —0.4 = 0.00059 ( 6.5)

emf emf )
(6.7)
pd?
Multiplying both sides by —————— gives:
M (l - emf)
. — p)gd? | —e, w,rd 1.75\ [u,rdp\> _
JG'(’D%zlso ) Tty iy L (6.8)
H emf H emf H
In equation 6.8:
d*p(ps —
p(p: - P8 _ ca ©.9)
12
where Ga is the ‘Galileo number’.
mfd, / .
and: Ump@p _ Cpf- (6.10)
L



FLUIDIZATION

where Re,,; is the Reynolds number at the minimum fluidising velocity and equation 6.8
then becomes:

I — ey , 1.75 ) _
Ga =150 3 Re,;+ | —=— | Reyy (6.11)
emf emf
For a typical value of e, = 0.4:
Ga = 14{]6}\’(3;}Ur + 27.3Re:3f (6.12)
Thus: Re:if + 51.4R€:”f —0.0366Ga =0 (6.13)
and: (R":uf)e”g:&‘i =257(/(145.53 x 107°Ga) - 1} (6.14)

and, similarly for e, = 0.45:
(R(.’:nf)emf:g_ﬁ =23.6{/(1 +9.39 x 107> Ga) — 1) (6.14a)

By definition:
mo, -
Unf = ER"mf (6.15)

[t is probable that the Ergun equation, like the Carman-Kozeny equation, also overpredicts
pressure drop for fluidised systems, although no experimental evidence is available on
the basis of which the values of the coefficients may be amended.

WeN and YU® have examined the relationship between voidage at the minimum
fluidising velocity, ep s, and particle shape, ¢, which is defined as the ratio of the diameter
of the sphere of the same specific as the particle d, as used in the Ergun equation to the
diameter of the sphere with the same volume as the particle d,.

Thus: o =d/d, (6.16)
where: d=6V,/A, and d, = (6V,/m)'.

In practice the particle size d can be determined only by measuring both the volumes
V, and the areas A, of the particles. Since this operation involves a somewhat tedious
experimental technique, it is more convenient to measure the particle volume only and
then work in terms of d, and the shape factor.
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Using equation 6.16 to substitute for — for d in equation 6.6 gives:
P

(1 - emf)Z Kl I - f’mf ,Oﬂmf2
(I = ems)(ps — p)g = 150 +1.75
! e?::!f (;bg dﬂz € f ['b d

Thus:

(ps —p)pgd; — 150 | — Enf L (pdpumf) _l_l 75 I Zd!% %ﬂf
ut ) f;j,f AN - ‘fi:fﬁf’s w

Substituting from equations 6.17 and 6.18:
Ga, = (150 x 11)Re,, ; 4+ (1.75 x 4)Re

where Ga, and Re,, are the Galileo number and the particle Reynolds number at the
point of incipient fluidisation, in both cases with the linear dimension of the particles
expressed as d,.

mfp mfp

Thus: Remfp + 6?’.3Remfp = 0.0408Ga, =0

giving: Re:w =33.65[/(1 +6.18 x IU_SGaP) —1] (6.19)

where: Upr = Ré 6.20
f= (dpp) mfp ( )

For small particles Re,ppmf = 20

U — dp” (pp — pelg Eme b3
e 150 pg 1 —Eme

For large particles (Re, ¢ = 1000)

2  dplpp—pile 3
= Upys = Ems Ps

1.75 pf

To avoid or reduce carryover of particles form the fluidized bed, keep the gas velocity between
Uy and U, Recall

Terminal velocity, U, = 3 or low Reynolds number and,
i

l_]t =175 Mfor high Reynolds number
Pe
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With the expressions for Umf and U, known for small (viscous-flow) and large (inertial flow)

particles or Reynolds number, one can take the ratio of U, and Umf:

U, 150(1-¢ -
For small Re.? Ut = ( ';f)=&33( "

2 o,
of 18650, O €
For spherical particles, ¢S = 1 and assuming &, = 045,U,= 50 Umf

Therefore, a bed that fluidizes at Tem/s could preferably be operated with velocities < 50 cms, with
few particles carried out or entrained with the exit gas.

T
For arge Re:p: 0 1
o

Or,u, =77 Uy for g = 045,
Therefore, operating safety margin in a bed of coarse particles is smaller and there is a
disadvantage for the use of coarse particles in a fluidized hed.

However, make a note that the operating particle size is also decided by the other factors such as
grinding cost, pressure-drop, heat and mass-transfer aspects.
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Example 6.1

A bed consists of uniform spherical particles of diameter 3 mm and density 4200 kg/m’. What will
be the minimum fluidising velocity in a liquid of viscosity 3 mNs/m” and density 1100 ke/m’?

Solution
By definition:
Galileo number, Ga = d°p(p; — p)g/u’*
= ((3 x 1073)* x 1100 x (4200 — 1100) x 9.81)/(3 x 107)
=1.003 x 10°

7

Assuming a value of 0.4 for e, equation 6.14 gives:

Re., = 25.7{/(1 + (5.53 x 1075)(1.003 x 10%)) — 1} = 40

mf:

and: U = (40 x 3 x 107)/(3 x 107 x 1100) = 0.0364 m/s or 36.4 mm/s

Example 6.2

Oil, of density 900 kg/m’ and viscosity 3 mNs/m’, is passed vertically upwards through a bed of
catalyst consisting of approximately spherical particles of diameter 0.1 mm and density 2600 kg/m’.
At approximately what mass rate of flow per unit area of bed will (a) fluidisation, and (b) transport
of particles occur?

Solution
(a) Equations 4.9 and 6.1 may be used to determine the fluidising velocity, .

= (/K" /(SH(1 = e))(1/n)(-AP/]) (equation 4.9)
AP =(1-e)p,—p)lg (equation 6.1)

where § = surface area/volume, which, for a sphere, = nd?/(nd*/6) = 6/d.

Substituting K" =3, § = 6/d and —AP/I from equation 6.1 into equation 4.9 gives:

g = 0.0035(6°/ (1 €))(d*(ps — p)g)/ 1.
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Hence : Gy = pu = (0.0055¢°/(1 = €))(d* (s = p)g)

In this problem, p; = 2600 kg/m’, p = 900 kg/m®, p = 3.0 x 10~ Ns/m?
andd=01mm=10x10"*m

As no value of the voidage is available, e will be estimated by considering eight closely packed
spheres of diameter d in a cube of side 2. Thus:

volume of spheres = 8(r/6)d”
volume of the enclosure = (2d)° = 84°
and hence:  voidage, e = [8d” — 8(w/6)d’|/8d" = 0.478, say, (.48,
Thus : G,y = 0.0055(0.43) 3(10742((900 x 1700) x 9.81)/((1 —0.48) x 3 x 10~
= 0,059 kg/m’s
(b) Transport of the particles will occur when the fluid velocity is equal to the terminal falling
velocity of the particle.
Using Stokes” law : = d*g(p; — p)/ 181 (equation 3.24)
= (1074 x 9.81 x 1700)/(18 x 3 x 107%)
=0.0031 m/s

The Reynolds number = ((10~* x 0.0031 x 900)/(3 x 10~%) = 0.093 and hence Stokes™ law
applies.

The required mass flow = (0.0031 x 900) = 2.78 kg/m’s
An alternative approach is to make use of Figure 3.6 and equation 3.35,
(R/pu")Re* =2 pg(p, — p) /30
= (2 x (107 x (900 x 9.81) x 1700)/(3(3 x 107)*) = .11

From Figure 3.6, Re = 0.09

Hence: Uy = Re(it/pd) = (0.09 x 3 x 107%)/(900 x 107*) = 0.003 m/s
and: G' = (0.003 x 900) = 2.7 kg/mzs
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(b) Transport of the particles will occur when the fluid velocity is equal to the terminal falling
velocity of the particle.

Using Stokes’ law : o =dg(ps — p)/ 181 (equation 3.24)
= ((107)* x 9.81 x 1700)/(18 x 3 x 107)
=0.0031 m/s

The Reynolds number = (10 x 0.0031 x 900)/(3 x 10~%) =0.093 and hence Stokes’ law
applies.

The required mass flow = (0.0031 x 900) = 2.78 kg/m’s
An alternative approach is to make use of Figure 3.6 and equation 3.35,
(R/pu")Re* =2 pg(p, ~ p) 3’
=(2x (107 x (900 x 9.81) x 1700)/(3(3 x 107} = L.11

From Figure 3.6, Re = 0.09

Hence: o = Re(ie/pd) = (0.09 x 3 x 107%)/(900 x 107*) = 0.003 m/s
and: G = (0.003 x 900) = 2.7 ke/m’s




