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MODELING FOR PROCESS DYNAMICS

Notice the shape of the temperature response is the same as the shape of the concentra-
tion response that we saw previously. By appropriate modeling of the process, we can
predict how the system will respond to changes in the operating conditions. Our ability
to model the process will be extremely valuable as we design controllers to automati-
cally control the process variables at their desired settings.

22 MATHEMATICAL TOOLS
FOR MODELING

As we just saw in our analysis of the chemical mixer, the unsteady-state material and
energy balance models that we wrote required us to solve differential equations to
obtain the concentration and temperature versus time behavior for the process. This
will be a common occurrence for us as we continue our studies of process dynamics
and control. It would be beneficial to review some additional tools available to us for
solving our process models. In Sec. 2.1, we solved the equations by separation and
integration. A couple of other useful tools for solving such models are Laplace trans-
forms and MATLAB/Simulink. In the next several sections, we will review the use of
these additional tools for solving our model differential equations.

Definition of the Laplace Transform
The Laplace transform of a function f(t) is defined to be F(s) according to the equation
_ [~ —st
F(s) = jo f(He St dt 25)

We often abbreviate this to

F(s) = L{f(®)}
where the operator L is defined by Eq. (2.5).

Example2.1. Find the Laplace transform of the function
f(t) =1

According to Eq. (2.5),

F(s) = j:a)e‘st dt = —
Thus,

L{1} =

wn | —

There are several facts worth noting at this point:

1. The Laplace transform F(S) contains no information about the behavior of f(t) for
t, 0. This is not a limitation for control system study because t will represent the
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CHAPTER 2 MODELING TOOLS FOR PROCESS DYNAMICS

time variable and we will be interested in the behavior of systems only for positive
time. In fact, the variables and systems are usually defined so that f(t) O for t, 0.
The time we designate as t = 0 is arbitrary. We shall generally define t = 0 as
the time when the process is disturbed from steady state (i.e., when an input is
changed). Our usual starting point will be a steady-state system or process, and we
will be interested in examining what happens when the system is disturbed. This
will become clearer as we study specific examples.

2. Since the Laplace transform is defined in Eq. (2.5) by an improper integral, it will
not exist for every function f(t). A rigorous definition of the class of functions pos-
sessing Laplace transforms is beyond the scope of this book, but readers will note
that every function of interest to us does satisfy the requirements for possession of
a transform [see Churchill (1972)].

3. The Laplace transform is linear. In mathematical notation, this means
L{afi(t) + bf2(t)} = aL{fi(t)} + bL{f2(t)}

where a and b are constants and f; and f, are two functions of t.

Proof. Using the definition, we have

L{afi(t) + bf2(t)} = j:[afl(t) + bf2 (e dt

a j: fithe ™ dt + b j: f2 (e dt
aL{fi(t)} + bL{f(1)}

4. The Laplace transform operator transforms a function of the variable t to a function
of the variable S. The t variable is eliminated by the integration.

Transforms of Simple Functions

We now proceed to derive the transforms of some simple and useful functions. We shall
see these common functions repeatedly during our future studies.

1. Thestep functionis

0 t<o0
1 t>0

f(t) ={

This important function is known as the unit-step function and will henceforth be
denoted by u(t). From Example 2.1, it is clear that

1
Lium} = S

As expected, the behavior of the function for t < 0 has no effect on its Laplace
transform. Note that as a consequence of linearity, the transform of any constant
A, that is, f(t) = Au(t), is just F(S) = A/s. Notice in the chemical mixing example
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PART 1 MODELING FOR PROCESS DYNAMICS

that we just discussed that the inlet concentration and temperature are described by
a step function initiated at time zero (3 P.M. in the example).

2. Theexponential function is

0 t<0 at
f(t) = = u(t)e
e 1oy
where u(t) is the unit-step function. Again proceeding according to definition, we
have
L{ue @) = [TetHatgr = —— L _gcrar) - 1
0 s+a o S+a

provided that s + a > 0, that is, S > —a. In this case, the convergence of the inte-
gral depends on a suitable choice of s. In case S is a complex number, it may be
shown that this condition becomes

Re(s) > —a

For problems of interest to us it will always be possible to choose S so that these condi-
tions are satisfied, and the reader uninterested in mathematical niceties can ignore
this point.

3. Theramp function is

f = {} :g = tu(t)

L{tut)} = j:te‘“dt

Integration by parts yields

s 1
Litut)} = —e t(g + —2) =% Homework 1

4, Thesinefunctionis

f(t) - {sinokt :ig = u(Dsin kt

L{u(t)sin kt} = _[:sin kte st dt

Integrating by parts, we have
—est ~
L{u(t)sinkt} = ————=(s sin kt + Kk cos kt)
s+ K » Homework 2

-k
s? + k?
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CHAPTER 2 MODELING TOOLS FOR PROCESS DYNAMICS

TABLE 2.1
Function Graph Transform
1
¢ 1
u( _— s
tu(t) !
u —
( 2
n!
thu(t) o

1
B 1
e () \\\\\ s+a

n!

n,—at L
t'e “u(t) (s + a)n-%—l

sin kt u(t) \/ o
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TABLE 2.1 (Continued)

Function Graph Transform
’\ /- s
cos kt u(t) | \/ m
k
sinh kt u(t) 2 K2
S
cosh kt u(t) 1 Fo—
N /\ )
e % sin kt u(t) N m
at s+a
e % cos kt u(t) T~ m

3(t), unit impulse
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In a like manner, the transforms of other simple functions may be derived.
Table 2.1 is a summary of transforms that will be of use to us. Those which have not
been derived here can be easily established by direct integration, except for the trans-
form of 8(t), which will be discussed in detail in the Appendix at the end of Chap. 3.

Using MATLAB for Symbolic Processing—L aplace Transfor ms

MATLAB is capable of symbolic processing. To prepare MATLAB for symbolic operations, some
variable names will be declared symbolic (rather than numeric) using the syns command.

syns a xy zt ks
We can also define u as the Heaviside function (the unit step):

u=sym(' Heavi side(t)"')
U=
Heavi si de(t)

Now we can determine the transform of the simple functions we have just discussed:
The step function:

| apl ace(u)
ans=
1/s

The exponential function:

| apl ace(exp(—a*t))
ans=
1/(s+a)

The ramp function:

| apl ace(t)
ans=
1/s72

The sine function:

| apl ace(sin(k*t))
ans=
k/ (s"2+k"2)

Transforms of Derivatives

At this point, the reader may wonder what has been gained by introduction of the La-
place transform. The transform merely changes a function of t into a function of S. The
functions of s look no simpler than those of t and, as in the case of A — A/s, may actu-
ally be more complex. In the next few paragraphs, the motivation will become clear. It
will be shown that the Laplace transform has the remarkable property of transforming
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the operation of differentiation with respect to t to that of multiplication by S. Thus, we
claim that

L{?} — SF(s) — F(0) 2.6)

where
F(s) = L{f(D)}

and f(0) is f(t) evaluated at t = 0. If f(t) is discontinuous at t = 0, f(0) should be evalu-
ated at t = 07, that s, just to the right of the origin. Since we will seldom want to
differentiate functions that are discontinuous at the origin, this detail is not of great
importance. However, the reader is cautioned to watch carefully for situations in which
such discontinuities occur.

Proof

df(t)} - df
LA = A —a g
{ dt Jo i’

To integrate this by parts, let
df

u=¢e dv=—dt
dt
Then
du = —se Stdt v = f(t)
Since
Judv = uv —jvdu
we have

df —st _ —st
joae dt = f(t)e

: + sj:f(t)e‘st dt = —f(0) + sF(s)

The salient feature of this transformation is that whereas the function of t was to be
differentiated with respect to t, the corresponding function of S is merely multiplied
by s. We shall find this feature to be extremely useful in the solution of differential
equations.

To find the transform of the second derivative we make use of the transform of
the first derivative twice, as follows:

2
L i(ﬂj :SL{E}_w
di2 dt | dt dt dt |,
= s[sF(s) — f(0)] — f’(0)
= s’F(s) — sf(0) — f/(0)
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CHAPTER 2 MODELING TOOLS FOR PROCESS DYNAMICS

where we have abbreviated

df )

= (0
at ey 0)

In a similar manner, the reader can easily establish by induction that repeated applica-
tion of Eq. (2.6) leads to

n
L{Z :} = s"F(s) — s" 1(0) — s" 2D (0) — - — sf"TD(0) — £ D(0)
t

where f'(0) indicates the ith derivative of f(t) with respect to t, evaluated for t = 0.

Thus, the Laplace transform may be seen to change the operation of differentiation
of the function to that of multiplication of the transform by s, the number of multipli-
cations corresponding to the number of differentiations. In addition, some polynomial
terms involving the initial values of f(t) and its first n — 1 derivatives are involved. In
later applications we usually define our variables so that these polynomial terms will
vanish. Hence, they are of secondary concern here.

Example 2.2. Find the Laplace transform of the function x(t) that satisfies the
differential equation and initial conditions

3 2
d—;‘+4d—§+5d—x+2x=2
dt dt dt

2
X(0) = dx(0) _ d-x(0) -0

It is permissible mathematically to take the Laplace transforms of both sides of a
differential equation and equate them, since equality of functions implies equality
of their transforms. Doing this, we obtain

$2X(s) — $2X(0) — sX’(0) — X”(0) + 4[s>X(s) — sx(0) — X’(0)]

+ 5[sx(s) — x(0)] + 2x(s) = %

where X(S) = L{X(t)}. Use has been made of the linearity property and of the fact
that only positive values of t are of interest. Inserting the initial conditions and
solving for X(s), we have

2

X®) = 5(53 + 4s% + 55 + 2)

2.7)

This is the required answer, the Laplace transform of X(t).
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2.3 SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS (ODEs)

There are two important points to note regarding this last example. First, application of
the transformation resulted in an equation that was solved for the unknown function by
purely algebraic means. Second, and most important, if the function X(t), which has the
Laplace transform 2/5(53 + 4s% + 55 + 2), were known, we would have the solution
to the differential equation and initial conditions. This suggests a procedure for solving
differential equations that is analogous to that of using logarithms to multiply or divide.
To use logarithms, one transforms the pertinent numbers to their logarithms and then
adds or subtracts, which is much easier than multiplying or dividing. The result of the
addition or subtraction is the logarithm of the desired answer. The answer is found by
reference to a table to find the number having this logarithm.

In the Laplace transform method for solution of differential equations, the func-
tions are converted to their transforms, and the resulting equations are algebraically
solved for the unknown function. This is much easier than solving a differential equa-
tion. However, at the last step the analogy to logarithms is not complete. We obviously
cannot hope to construct a table containing the Laplace transform of every function f(t)
that possesses a transform. Instead, we will develop methods for expressing compli-
cated transforms, such as X(s) in Example 2.2, in terms of simple transforms that can be
found in Table 2.1. For example, it is easily verified that the solution to the differential
equation and initial conditions of Example 2.2 is

Xty =1—2tet —e 2 (2.8)
The Laplace transform of X, using Eq. (2.8) and Table 2.1, is

1 1
2 - =
(s+1> s+2

X(s) = 1 2.9
S

Equation (2.7) is actually the result of placing Eq. (2.9) over a common denominator.

Although it is difficult to find X(t) from Eq. (2.7), Eq. (2.9) may be easily inverted to

Eq. (2.8) by using Table 2.1. Therefore, what is required is a method for expanding the

common-denominator form of Eq. (2.7) to the separated form of Eq. (2.9). This method

is provided by the technique of partial fractions, which is developed in Chap. 3.

Using MATLAB for Symbolic Processing—I nversion of L aplace Transforms

Remember that we have previously declared some variables symbolic (&, k, X, ¥, Z, t and S). Let’s have
MATLAB invert Eq. (2.3) for us and determine X(t).

X 2/ s/ (s"3+4*s"2+5*s+2))

X=

1-exp(—2*t)-2*t *exp(-t)

which is the same as Eq. (2.8).
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CHAPTER 2 MODELING TOOLS FOR PROCESS DYNAMICS 27

Using MATLAB for Symbolic Processing—Solution of Differential Equations

MATLAB can solve differential equations symbolically using the DSOLVE command. The deriva-
tives are represented as Dx (first derivative), D2x (second derivative), etc.

x‘ DBx+4* DRx+5* Dx+2* x=2' , ' X(0) =0' , ' Dx(0) =0' , ' D2x(0)=0")

X=

1-exp(-2*t)-2*t*exp(-t) same result

which, again, is the same as Eq. (2.8).

Now, let’s return to our chemical mixing scenario from earlier in the chapter.

Example2.3. Transform the differential equations resulting from the mass and
energy balances for the chemical mixer to determine the transform of the exit
concentration and temperature.

dCa
dt

T + Ca = Ca3 mass balance

Td—T +T =T + ! Q energy balance
dt pV3Cp

For the mass balance,
7[sCa(s) — Ca(0)] + Ca(s) = Ca3(s)

Rearranging and solving for Ca(s), we have

Ca3(s) + 7Ca(0)

Ca(®) = s+ 1

After the disturbance, Cy3 has a constant value of 2 g/L.. Therefore, Ca3 (s) = 2/s.
Also, from the process description, we know that C,;(0) = 3g/L [this is the initial
concentration of A in the tank at time O (3 p.M.)] and that T, the time constant, is
5 min. Substituting these values into the expression for Ca yields

ds+53) _ 2 15
55 + 1 s(3s + 1) 55 + 1 (2.10)

Ca(s) =

For the energy balance,

7IST(S) — TO)] + T(8) = Ta(s) + ——Q(s)
3Cp

PV
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28 PART 1 MODELING FOR PROCESS DYNAMICS

Rearranging and solving for T(s), we find

_ T+ [1/(pvsCp)]Q(s) + 7T(0)

T(s
© s+ 1

After the disturbance, T5 is constant at 35°C, so T3 (S) = 35/s. The initial tem-
perature in the tank T(0), at 3 p.M. is 80°C. The heater input Q is constant at
1.05 X 10° cal/min. The time constant 7 is 5 min. Substituting these values into the
expression for T(S) gives

35 | (1.05 X 105 “lj
Tt 3 . MmN/ 1 5(80)
(10009)(30,)(1 j
L min g-°C
T(s) =
55 +1
Simplifying yields
T(s) = 70/s + 5(80) _ 70 n 400 @1
55 +1 s(ds +1) 55 +1 )

If we can invert these expressions for C4(S), Eq. (2.10), and T(s), Eq. (2.11), we
will obtain the time domain solutions for the exiting concentration and tempera-
ture. We will address this topic in Chap. 3.

To summarize, we have reviewed a procedure using Laplace transforms for solv-
ing linear, ordinary, differential equations (ODESs) with constant coefficients.
The procedure is as follows:

1. Take the Laplace transform of both sides of the equation. The initial conditions are
incorporated at this step in the transforms of the derivatives.

2. Solve the resulting equation for the Laplace transform of the unknown function
algebraically.

3. Find the function of t that has the Laplace transform obtained in step 2. This func-
tion satisfies the differential equation and initial conditions and hence is the desired
solution. This third step is frequently the most difficult or tedious step and will be
developed further in Chap. 3. It is called inversion of the transform. Although there
are other techniques available for inversion, the one that we will develop and make
consistent use of is that of partial fraction expansion.

A simple example will serve to illustrate steps 1 and 2 (we’ll save step 3 until Chap. 3).

Example2.4. Solve


hp
Highlight
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We number our steps according to the discussion in the preceding paragraphs:
1 [sx(s) — 2]+ 3x(s) = 0
[ ——
sX(s)—x(0)

2
2 = =
X() +3
3. xt)y=2e"%
SUMMARY

In this chapter we discussed the importance of process modeling and worked through
a chemical mixing example that led to two differential equations that described the
process (one from the mass balance and one from the energy balance). We solved those
relatively simple equations by separating and integrating. We also discussed using
Laplace transforms for solving differential equations and presented a table of common
transforms. We concluded by demonstrating the use of MATLAB for symbolically
solving differential equations. In Chap. 3 we will discuss the method of partial fractions
for inverting the solutions we obtained by using transforms to the time domain.

PROBLEMS

2.1. Transform the following:

(a)

T
in(2t + —
sin( ) )

(b) e tcos 2t
(c) Use the formula for the Laplace transform of a derivative to find L{sinh(kt)} if you are

(@

(b)

3
s

© —=

(d)

O

®

@

(h)

2 +9
3
s +4s+8
s+ 4
2 +4s+38
1
(s +2)°

given that L{cosh(kt)} = S/(S2 - k2).

2.2. Invert the following transforms.
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2.3.

2.4.
2.5.
2.6.

2.7.

2.8.

2.9.

Find x(s) for the following differential equations.

d2x dx _ o
@ J7 FAg T X = U XO) = X0 =0

d2x dx _ o

d2x dx B o
© 47+ 2 X = ub X0 = X0 =0

Solve Prob. 2.1 using the MATLAB | apl ace command.

Solve Prob. 2.2 using the MATLAB i | apl ace command.

Solve Prob. 2.3 using the MATLAB dsol ve command, and then use ezpl ot to graph the
solutions.

Use the MATLAB dsol ve command to solve the differential equations that we developed
for the mass and energy balances for the chemical mixing scenario, and then use ezpl ot to
graph the solutions. Compare the results with those presented in the text.

Use the MATLAB i | apl ace command to invert Egs. (2.10) and (2.11), and then use
ezpl ot to graph the solutions. Compare the results with those presented in the text.

Rework the chemical mixing scenario if at 3 p.M. the operator mistakenly increases the flow
rate of stream 1 to 20 L/min while stream 2 and the heater input remain unchanged.
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CAPSULE SUMMARY

Definition of the Laplace transform:  L{f(t)} = f(s) = J:f (te St dt

Linearity: L{af;(t) + bfy(t)} = aL{fi(t)} + bL{fx(t)}
Transform of first derivative: L{%} = sf(s) — f(0)

Transform of nth derivative:

n
L{Zt:} = Snf(S) - snflf(()) - 5“*21:(1)(0) —n— Sf(n72)(0) _ f(nil)(())

Transforms of some simple functions: See Table 2.1.

The following procedure uses Laplace transforms for solving linear, ordinary, differen-
tial equations (ODEs) with constant coefficients:

1

2.

Take the Laplace transform of both sides of the equation. The initial conditions are
incorporated at this step in the transforms of the derivatives.

Solve the resulting equation for the Laplace transform of the unknown function
algebraically.

Find the function of t that has the Laplace transform obtained in step 2. This function
satisfies the differential equation and initial conditions and hence is the desired solu-
tion. This third step is frequently the most difficult or tedious step. We will make
consistent use of partial fraction expansions to accomplish this (see Chap. 3).

Useful MATLAB Commands:

synms—declares variables to be symbolic

| apl ace—takes the Laplace transform of a symbolic expression
i | apl ace—inverts a symbolic Laplace transform expression
dsol ve—solves a differential equation symbolically
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