1. Heat Capacity:
Heat capacity is defined as the change in temperature of a system with a change
of heat transferred to the system:
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C= heat capacity
Q= heat
T= Temperature

Heat Capacity at Constant VVolume
The constant-volume heat capacity is defined as:

Cy = (E’E) (2.16)
"

This definition accommodates both the molar heat capacity and the specific heat
capacity (usually called specific heat), depending on whether U is the molar or
specific internal energy.

Specific heat capacity: the amount of heat needed to raise the temperature of a
unit mass of material by one degree.

Eqg. (2.16) may be written for a constant-volume process in a closed system as
dU =CydT (const V) (2.17)
Integration yields:
T
AU = f CydT (const V) (2.18)
I

The combination of this result with Eqg. (2.10) for a mechanically reversible, constant-
volume process gives:
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QOQ=nAU=n f -. CydT (const V) (2.19)
Ti



If the volume varies during the process but returns at the end of the process to its initial
value, the process cannot rightly be called one of constant volume, even though V, =V,
and AV =0

Heat Capacity at Constant Pressure

The constant-pressure heat capacity is defined as:

dH
Cp= (ﬁ)p (2.20)

Eqg. (2.20) is equally well written for a constant-pressure, closed-system process as:

dH =CpdT  (const P) (2.21)

T
&H:f CpdT (const P} (2.22)
T
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For a mechanically reversible, constant-pressure process, this result may be combined
with Eq. (2.13) to give
I3

OQ=nAH = nf CpdT (const P) (2.23)
T



Example 2.9

Air at 1 bar and 298.15 K (25°C) is compressed to 5 bar and 298.15 K by two different
mechanically reversible processes:

(a) Cooling at constant pressure followed by heating at constant volume.
(b) Heating at constant volume followed by cooling at constant pressure.

Calculate the heat and work requirements and AU and AH of the air for each path.
The following heat capacities for air may be assumed independent of temperature:

Cy =20.78 and Cp =29.10Jmol~! K!

Assume also for air that PV /T is a constant, regardiess of the changes it undergoes.
At 298.15 K and 1 bar the molar volume of air is 0.02479 m® mol—'.



Solution 2.9

In cach case take the system as | mol of air contained in an imaginary pis-
toncylinder arrangement. Because the processes considered are mechanically
reversible, the piston is imagined (0 move in the cylinder without friction. The
final volume is:
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(@) During the first step the air is cooled at the constant pressure of | bar until the
final volume of 0.004958 m” is reached. The temperature of the air at the end of
this cooling step is:

V; = v.% -(wzm( )-aowssm’

Vs 0.004958
= — | - -
: T'v. 298 5(0.02479) 963K

Whence,

Q = AH = Cp AT = (29.10)(59.63 — 298.15) = —6,941 ]
AU = AH - A(PV)=AH - P AV
= —6,94]1 — (1 x 10°)(0.004958 — 0.02479) = —4,958 J

During the second step the volume is held constant at V; whale the air is heated
to its final state. By Eq. (2.19),

AU = Q =Cy AT = (20.78)(298.15 — 59.63) = 4958 )
The complete process represents the sum of its steps. Hence,
Q=-6941 +4958 = —-1983]

and AU = -4958 449358 =0
Because the first law applhies to the entire process, AU = Q + W, and therefore,

= 19834+ W whence W = 1983J

Equation (2.15), AH = AU + A(PV). also applies 10 the entire process. But
Ti = T, and therefore, P} V; = P V3. Hence A(PV) =0, and

AH =AU =0

(b) Two different steps are used in this case to reach the same final state of the air.
In the first step the air is heated at a constant volume equal to its initial value until
the final pressure of 5 bar is reached. The air temperature at the end of this step is:

I = n% = 298.15 (%) = 149075 K
|



For this step the volume is constant, and
Q=AU = Cy AT = (20.78)(1.490.75 — 298.15) = 24,788 ]
In the second step the air is cooled at P = 5 bar 1o its final state:

Q = AH =Cp AT = (29.10)(298.15 — 1.490.75) = —34,703 }
AU = AH - A(PV)=AH - P AV

= ~34.703 = (5 x 10°){0.004958 — 0.02479) = —24,788 )
For the two steps combined,

Q = 24788 - 34,703 = -9915)
AU = 24788 - 24788 =0
W=AU-Q=0~(=9915) =9915)

and as before AH=4aU=0

The property changes AU and A H calculated for the given change in staie are
the same for both paths. On the other hand the answers (o parts (a) and (b) show

that @ and W depend on the path.



Example 2.10

Calculate the internal-energy and enthalpy changes that occur when air is

from an initial state of 40(°F) and 10(atm), where its molar volume is 36. (b
moie)~', to a final state of 140(°F) and 1(atm). Assume for air that PV/T is constant
and that Cy= 5 and Cp= 7(Btu){lb mole)~'F)~!.

Solution 2.10

Because property changes are independent of the process that brings them about,
calculations may be based on a two-step, mechanically reversible process in which
1(Ib mole) of air is (@) cooled at constant volume to the final pressure, and (b)
heated at constant pressure 10 the final temperature. The absolute temperatures
here are on the Rankine scale:

Ty = 40 + 45967 = 499.67(R) 77 = 140 4 459.67 = 599.67(R)

Because PV = AT, the ratio T/P is constant for step (a). The intermediate
temperature between the two steps is therefore:

T' = (499.67)(1/10) = 49.97(R)

and the temperature changes for the two steps are:

AT, = 4997 - 499.67 = —449.70(R)
ATy = 599.67 = 49.97 = 549.70(R)



For step (a), by Egs. (2.18) and (2.15),

A"g = AU‘ + v AP‘
= =22485 + (36.49)(1 — 10)(2.7195) = —-3,141.6{Bt)

The factor 2.7195 converts the PV product from (atm)ft)’, which is an energy
unit, into (Bw).
For step (b), the final volume of the air is:

Vy = v.-;'—g = 36.49 (?) (%) = 437.93(fr)*

By Eqs. (2.22) and (2.15),

AH, = Cp AT, = (7)(549.70) = 3 847.9(Btu)
AUy = AHs - P AV,
= 38479 — (1){437.93 - 36.49)(2.7195) = 2.756.2(Btu)

For the two steps together,

AU = —2,248.5 +2,756.2 = 507.7(Btu)
AH = —3,141.6 + 3.847.9 = 706.3(Btu)

Zeroth Law of Thermodynamics:

< Same temperature -

The forgotten Law of Science

Two systems are said to be in thermal equilibrium if there is no heat flow
between them when they are brought into contact.

Temperature is the indicator of thermal equilibrium in the sense that there is no
net flow of heat between two systems in thermal contact that have the same
temperature.

Adiabatic walls
Two systems individually in thermal equilibrium with a third system are in (@
thermal equilibrium with each other.

Diathermal walls
(silver) b)



