Thermodynamic Third class

1.6 Implied Property Relations for an Ideal Gas
The definition of heat capacity at constant volume, Eq. (2.16), leads for an ideal gas to
the conclusion that Cv is a function of temperature only:

o (at,:') _dU o s
v=\ar /), Tar 2:13)

The defining equation for enthalpy, Eq. (2.1 I), applied to an ideal gas, leads to the
conclusion that H also is a function of temperature only:

H=U+PV=U(T)+RT = H(T) (3.16)

The heat capacity at constant pressure Cp, defined by Eq. (2.20), like Cv, is a function
of temperature onfy:

o= (2) 28y,
P=\ar), ar " W)

A useful relation between Cp and Cv for an ideal gas comes from differentiation of Eq.
(3.16):
dH  dU

-+ R=Cy+ R (3.18)

PO = aT

This equation does not imply that Cp and CV are themselves constant for an ideal gas,
but only that they vary with temperature in such a way that their difference is equal to
R.

For any change of state of an ideal gas Eq. (3.15) may be written:

dU = CydT (3.19a)
Whence,
AU = [CvdT (3.19b)
Bv Eq.(3.17), dH = CpdT (3.20a)
Whence, AH = [C,a dT (3.20b)
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Equations for Process Calculations: Ideal Gases

For an ideal gas in any mechanically reversible closed-system process, Eq. (2.6),
written for a unit mass or a mole may be combined with Eq. (3.19a):

dQ ‘3 dW = CV dT

The work for a mechanically reversible closed-system process is given by Eq. (1.2),
also written for one mole or a unit mass:

dW=—-PdV
Whence, dQ =CydT + PdV

The two preceding equations for an ideal gas undergoing a reversible process in a

closed system take several forms through elimination of one of the variables P, V, or T
by Eq. (3.13). Thus, with P =RT/V they become:

PV =RT| (ideal gas) (3.13)
dv
dQ——-C';:dT-v!-RTm‘;— (3.21)
v’

Alternatively, let V =RT/ P:

{Q—C-1T+P(81T f?iw)
¢ =Ly Pt P.)l

With Eq. (3.18) this reduces to:

1P
40 = BydT = RT‘? (3.23)
e dW = —RdT + mr‘%p (3.24)

Finally, let T = PV/R:

vV P
dQ =Cy ("k‘dp-i' ‘—Q-dV) +PdV
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Again with Eq. (3.18) this becomes:

Cy Cp .
VdP + —PdV 3.25
R R 60}

dQ =
The work is simply: dW =-PdV

These equations may be applied to various processes, as described in what follows. The
general restrictions implicit in their derivation are:

e The equations are valid for ideal gases.
e The process is mechanically reversible,
e The system is closed.

1. Isothermal Process (constant Temperature):

By Egs. (3.19b) and (3.20b), AU=AH=0

PV = constant

By Egs. (3.21) and (3.23)

p*
Q=RTIn 2 = _RTIn 2
=RTIne— =~ n—
i & thaher T
By Egs. (3.22) and (3.24), B Lower T
{1 5
W Y o RTIn 2
/ = == —
RT In v, n P

Note that Q = - W, a result that also follows from Eq. (2.3). Therefore,

V> R .
Q=-W= R‘l’ln‘—,‘ =--RTln P {const T') (3.26)
1 1
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2. Isobaric Process (constant pressure) o -
By Egs. (3.19b) and (3.20b), p

aU=fC‘.-dT and M:fc,,dr

and by Egs. (3.23) and (3.24),
Qaj(.'pdT ad Wu-RN-T)
Note that Q = AH, a result also given by Eq. (2.13). Therefore,

O=AR= [ CpdT  (const P) (3.27)

3. Isochoric (Constant- V) Process
Equations (3.19b) and (3.20b) again apply:
' B

By Egs. (3.21) and (1.3),

{4 i
il i

¢=[cvar  wa  W=0 feovolametric
(b}

Note that Q = AU, a result also given by Eq. (2.10).
Therefore,

Q=AU= / CydT  (const V) (3.28)

4. Adiabatic Process: Constant Heat Capacities

An adiabatic process is one for which there is no heat transfer between the system and its
surroundings; that is, dQ = 0.

Integration with Cv and Cp constant then yields simple relations among the variables T, P,
and V. For example, Eq. (3.21) becomes:

dr R dv

TG
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Integration with Cv constant then gives: \

R/Cy

I:_(V[) P
i \V

[sothermal

1_ B
Similarly, Egs. (3.23) and (3.25) lead to: _ -. ;
Acirabatig 'S
{1 \
T ( Py ‘)“ Icr . P, ( v, )‘ &
A I v an — =
1’ : P] Pl \ V:
These equations may also be expressed as:
Cp | ‘
f v = e G?Ol
i (,'l,

Cp=Cv+R from Eq. 3.18
(Co=Cv+R) =Cv

y=1+R/Cv, R/Cv=7-1

() Ba(z)

Tl Vz Tl PZ
P1 Vl PZ VZ
From =
T1 Tz
v, P,
s 3.29:
I'V¥~' = constant o
g 332
T Pi VY = constant { gb)
2 20
PVY = constant o

Equations (3.29) apply to an ideal gas with constant heat capacities undergoing a
mechanically reversible adiabatic process.
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The work of an adiabatic process may be obtained from the relation:
dW=dU=CvdT
If Cv is constant, integration gives:
W =AU = Cy AT (3.31)

Alternative forms of Eq. (3.31) are obtained when Cv is eliminated in favour of the heat-
capacity ratio y:

,_Cr_CvtR_ R
T T e T ey
R
whence (s“—“ﬁ
; R AT
therefore W=Cy AT = 'y‘— 1

Since RT; =P; V,and RT; = P, V3, this expression may be written:

. Rip—-RYGy BB~ FBY

W —
y—1 y—1

(3.32)

Equations (3.31) and (3.32) are general for an adiabatic process, whether reversible or not.
However, V; is usually not known, and is eliminated from Eq. (3.32) by Eq. (3.29¢), valid
only for mechanically reversible processes. This leads to the expression:

“r P" (y—1)/y RT Pﬂ {(y=1My
W= 20 (-:) —1f=— (—) -1 (333)
y=1 Py e 1 P

e For monatomic gases, y = 1.67;
e Approximate values of y are 1.4 for diatomic gases (H,, O, and N»)
e and 1.3 for simple polyatomic gases such as CO,, SO;, NH3, and CHs.

S. Polytropic Process

Since polytropic means "turning many ways:' polytropic process suggests a model of some
versatility. With 3 a constant, it is defined as a process represented by empirical equation

6
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PV? = constant (3.34a)
For an ideal gas equations analogous to Egs. (3.29a) and (3.29Db) are readily derived:

TVv? ! = constant (3.34b)

T P9 = constant (3.34¢)

When the relation between P and V is given by Eq. (3.34a), evaluation of PV yields

Eq. (3.33) with y replaced by &

(3=-11/5
W = % [(%) - 1] (.35
— i

Moreover, for constant heat capacities, the first law solved for Q yields:
§—y)RT, | [(P\*"* A
7 . s {21 (_,.) " (3.36)
@-=1)y -1 P

The processes described in this section correspond to the four paths shown in Fig. 3.6 for
specific values of 8

Isobaric process: By Eq. (3.34a),6=0.

Isothermal process: By Eq. (3.34b), 6= 1.

Adiabatic process: d =17.

Isochoric process: By Eq. (3.34a), dV/dP = V/P3; for constant V, 8 =+

Figure 3.6 Paths of polytropic processes characterized by specific values of 8

Examples 3.2-37
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Example 3.2
Air is compressed from an initial state of 1 bar and 25 C o a final state of 5 bar and
25 C by three difterent mechanically reversible processes in a closed system:

(a) Heating at constant volume foliowed by cooling at constant pressure.
(b) Isothermal compression.
(c) Adiabahc compression followed by cooling at constant volume.

Assume air 10 be an ideal gas with the constant heat capacities, Cy = (5/2)R and
Ce = (7/2)R. Caiculate the work required, heat! transferred, and the changes in
internal energy and enthalpy of the air for each process.

1 oal
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Solution 3.2

Choose the system as | mol of air. For R = 8314 Jmol ™' K1,
Cy = 20.785 Cp=29.099)mol~' K~!
The initial and final states of the air are identical with those of Ex. 2.9, where:
Vi = 0.02479 V> = 0.004958 m*
Because 7 is the same at the beginning and end of the process, in all cases,
AU=AH=0
(@) The process here is exactly that of Ex. 2.9(b), for which:
Q=-9915] and W=9915] -

(b} Equation (3.27) for the isothermal compression of an ideal gas applies:

P
Q=-W=RTi -f;l = (8.314)(298.15)In - = ~3.990 ]

LA |

(c) The initial step of adiabatic compression takes the air it to its final volume of
0.004958 m’. By Eq. (3.30a), the temperature at this point is;

A 0.02 -
o T;(V) im.li}(g—%) = 567.57K

For this step. @ = (), and by Eg. (3.32), the work of compression is:
W =Cy AT = (20.785)(567 .57 — 298.15) = 5,600 )
For the constant-volume step, no work is done; the heat transfer is:
Q=AU=Cy(l:=-T)=-5600]
Thus for process (c).

W=5600] and Q=-5600)

Although the propenty changes AU and AH are zero for each process, @
and W are path-dependent. but here @ = —W. Figure 3.7 shows cach process
on a PV diagram. Because the work for cach of these mechamically reversible
processes is given by W = — [ PdV, the work for each process is proportional
to the total area below the paths on the PV diagram from 1 to 2. The relative sizes
of these areas correspond 1o the numerical values of W
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Example 3.3

An ideal gas undergoes the following sequence of mechanically reversible processes
in a closed system:

(@) From an initial state of 70°C and 1 bar, it is compressed adiabaticalty to 150°C.
(b) It is then cooled from 150 to 70°C at constant pressure.
(c) Finally, it is expanded isothermally to its original state.

Caiculate W, Q. AU, and A H for each of the three processes and for the entire Cycle.
Take Cy = (3/2)kRand Cp = (5/2)R.

Figore A8. Diagram for Ex. 3.3.

wc
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Solution 3.3
ForR=8314Imol 'K\,

Cy = 12471 Cp=20785Imol™' K~*
The cycle is shown on a PV diagram in Fig. 3.8. Take as a basis | mol of gas.
{a) For an ideal gas uaderpoing adiabatic compression. @ = 0. whence
AU =W =Cy AT = (12471150 - 70) =998 J

AH = Cp AT = (20.785)(150 - 70) = 1,663 ]
Pressure P is found from Eq. (3.30b):

T\ /-4 150 + 273.15\*°
= - = {1l e ————— = i
g P'(r,) ’(M+213.15) Lo

(&) For this constant-pressure process,
Q=AH =Cp AT = (20785170 - 150) = - 1663 ]
AU =Cyv AT = (12471)(70 - 150) = -998 )
W= AU - Q@ = —998 — (- 1,663) = 665 J
(c) For ideal gases undergoing an isothermal process, AU and AH are zero:

Eq. (3.27) yields:
P 1.
Q=-W= Rrh% =RTIn *P“:: = (8314)(343.15)1n *ﬁ?}-—g = 1495]
For the entire cycle.

Q = 0— 1,663+ 1495 = —168]
W =098 + 665 - 1495 =168]
AU =998 -998+0=0
AH = 1663 -16634+0=0
The propeny changes AU and A H both are zero for the entire cycle. because the

mitial and final states are identical. Note also that @ = —W for the cycle. This
follows from the first law with AU =10,

11




Example 3.4
If the processes of Ex. 3.3 are carried out irreversibly but so as o accomplish exactly
the same changes of stale— the same changes in P, T, U, and H— then different
values of ¢ and W result. Calculate ¢ and W if each step s carried out with an
efficiency of 80°%.

Solution 3.4

If the same changes of state as 10 Ex. 3.3 are camed out by irreversible processes,
the property changes for the steps are identical with those of Ex. 3.3, However,
the values of Q and W change.

ta) For mechanically reversible, adiabatic compression, W = 99% J_ If the process
is B0% efficient compared with this, W = 998/0.80 = 1,248 J. This step cannot
here be adiabatic. By the first law,

Q=AU - W =998 — 1248 = -250)

1b) The work for the mechamically reversible cooling process is 665 ). For the
irreveruble process, W = 665/0.80 = 831 J. and

Q=AU - W=-98 — R3] = —-1,829]

i) As work 1s done by the system 1o this step, the ireversible work in sbsolute
valoe is less than the reversible work of — 1,495 J:

W = (0.80)(~1495) = —1,196 )
Q=AU -W=0+119=119]
For the entire cycle. AU and AH are zero, with
= —250 — 1.829 + 1.196 = —883 ]
W = 1248 + 831 — 1,196 = 883 J
A summary of these results and those for Ex. 3 3 is given in the following table:

values are in joules.
Mechanically reversible, Bx. 3.3 leveversible, Ex. 3.4
AU  AH 0 w | av  aH o W
@ 96 1663 0 998 | 995 1663 2% 1248
B) -998 1663 -1663 665 -998 1663 —1829 831
i) 0 D 1495 1495 0 0 L19%  ~1,19
Sum - 0 e 188 0 0 _s&3 =@

The cycle is one which requires work and produces an equal amount of heat.
The striking feature of the comparison shown in the table is that the wial work
required when the cycle consists of three irreversible sieps is more than five times
the total work required when the steps are mechanically reversible, even thoagh
each mreversible step is assumed 80% efficient.
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