Lecturer information:

Assist Prof. Dr. Omar Yasin Thayee

BSc, MSc, PhD (Petroleum, Polymer & Petrochemical Engineering)

Tikrit University Iraq, Kingston University, Materials Research Centre Kingston upon Thames London UK.

Email: omaroilgas@tu.edu.iq

Faculty of Petroleum Process Engineering

Petroleum & Gas Refining Engineering

Teacher note

Please feel free to contact me on email or visit my office during office hours. I am always here to help. I am encouraging you to express any questions or any difficulties experienced during the course directly to me. I also welcome and value your feedback so that we can make any changes as we learn together.

Course name

Properties of Petroleum & Gases, 2nd Year

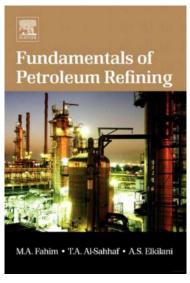
Course code: PPG 203 Credits: 6 mandatory

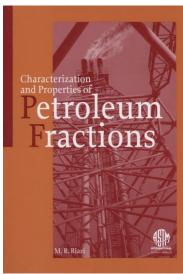
Teaching scheme: 2 hours lecture and 2 hours laboratory per week

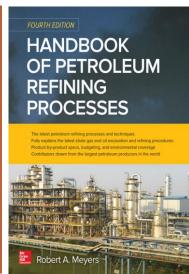
Percentage of allowable change in syllabus: 20 %

Course Description

• This course is for the students of petroleum & Gas Refining engineering and the student of Industrial chemistry. The course provides more information about the origin, evaluation, composition and classification of crude oil. A brief overview to crude oil refining, crude oil products, quality control on petroleum products gases.


Course Goals and Objectives


• The purpose of this course is to provide the students with an opportunity to acquire a basic scientific and technological understanding of the evaluation techniques of crude oil and its products. This course is an excellent introduction for those working or interested in the Oil & Gas industry.


Reference book:

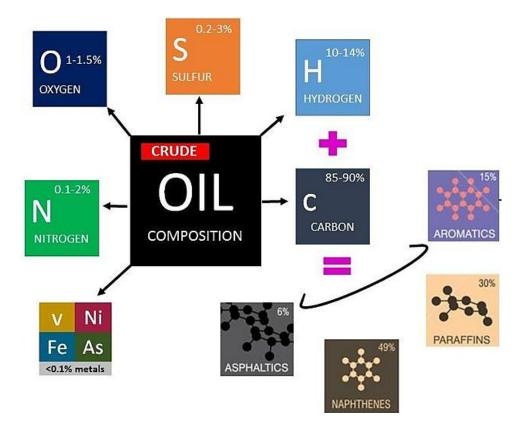
- 1- Characterization of petroleum products by Riazi
- 2- Handbook of Petroleum Refining Processes by Meyers
- 3- Fundamentals of Petroleum Refining by Fahim

Reading Materials:

Distribution of grades:

- ➤ Monthly examinations: 30%
- Quizzes, assignment, homework, and class activities: 5%
- ➤ Laboratory reports and examinations: 15%
- ➤ Final exam: 50%

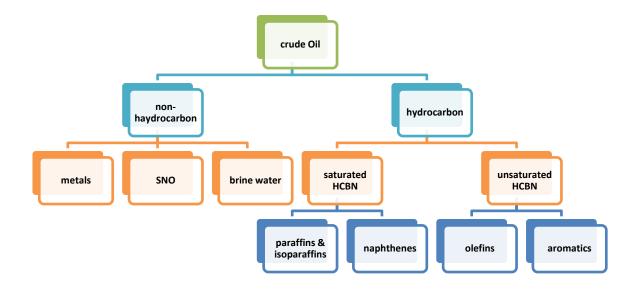
Syllabus for the course code PPG203 for the academic year 2018-2109


Topics covered

- 1- Crude oil composition
- 2- Crude oil classification
- 3- Petroleum product specifications
- 4- Physical and chemical properties of petroleum products
- 5- Quality control of crude oil and its products (crude oil evaluation)
- 6- Evaluation of sulphur and wax content
- 7- Distillation curves (ASTM, TBP, SD, and EFV) at atmospheric pressure
- 8- Thermo-physical properties calculations
- 9- Prediction and conversion of distillation data
- 10-Interconversion of various distillation data at atmospheric pressure
- 11- Interconversion of various distillation data at reduced pressure
- **12-** Predication of Molecular Weight (*Riazi-Daubert Methods*)
- 13- Prediction of Normal Boiling Point Riazi-Daubert Correlations
- 14- Prediction of Specific Gravity/API Gravity

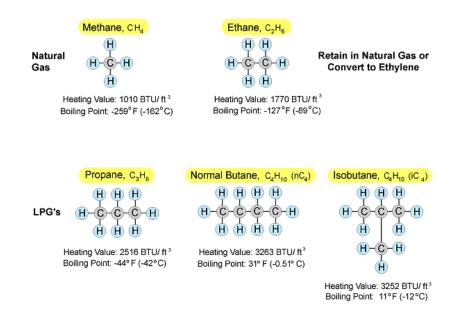
- **15-Prediction of Critical Properties**
- 16- Prediction of Density, Refractive Index, CH Weight Ratio, And Freezing Point
- 17- Prediction Of Kinematic Viscosity At 38 And 99°C
- 18- Prediction of the Composition of Petroleum Fractions
- 19- Prediction Of PNA Composition
- 20- Prediction of Elemental Composition
- 21- Properties Related to Volatility
- 22-Pour Point
- 23- Cloud Point
- 24- Aniline Point
- 25- Cetane Number and Diesel Index
- 26- Octane Number
- 27- Carbon Residue
- 28-Smoke Point
- 29- Natural Gas Properties
- 30-Natural Gas Composition (Liquefied Petroleum Gases Properties& Refinery Gases Properties)

Composition & Classifications of Crude Oil


- Crude oil is a complex liquid mixture of hydrocarbon compounds that consist mainly of carbon and hydrogen.
- ➤ In addition, small amounts of organic compounds containing sulphur, oxygen, nitrogen and metals such as vanadium, nickel, iron and copper.

Hydrogen to carbon H/C ratios affects the physical properties of crude oil.

- As the hydrogen to carbon ratio **decreases**, the gravity and **boiling point** of the hydrocarbon compounds **increases**.
- The **higher H/C ratio** of the feedstock, the **higher its value** to a refinery because less hydrogen is required.


Crude Oil Composition Chart

Hydrocarbon Components

✓ Saturated hydrocarbons

- \triangleright Paraffins & Isoparaffins (alkanes) (C_nH_{2n+2}): C1 to C3 alkanes are usually found associated with crude oils in a dissolved state.
- The presence of isoparaffins in gasoline is essential for increasing the octane number of gasoline fuels.

- Paraffins are high molecular weight, high boiling point and Low octane number.
- Isoparaffins are low boiling points and high octane number.

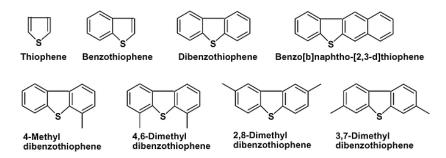
➤ Naphthenes (cycloalkanes) C_nH_{2n}

- The boiling point and densities of naphthenes are higher than those of alkanes having the same number of carbon atoms?
- Mutli-ring naphthenes are present in the heavier parts of the crude oil.

✓ Unsaturated hydrocarbons

- ➤ Olefins are rarely formed in the crude oil?
- Contain carbone-carbone multiple bonds (double, triple or both)
- ➤ They are produced during cracking and conversion processes.
- This may indicate that crude oil originated under a high pressure.

> Aromatic hydrocarbons


- Light petroleum fractions contain mono-aromatics rings such as benzene, Toluene and Xylene.
- BTX is important petrochemical feed stocks, and their presence in gasoline increases the octane number.
- Poly-aromatic compounds are found in the heavy crude oil, and their presence is undesirable because they cause catalyst deactivation and coke deposition during processing, and environmental problems when they are present in diesel and fuel oils.

The amount of aromatics in different crude oils varies from 15 to 50%. The highest amounts of aromatics are typically found in naphthenic oils?.

Non-hydrocarbon Components

✓ Sulphur Compounds

- Crude oil contain sulphur heteroatoms in the form of elemental sulphur S, dissolved hydrogen sulphide H₂S, carbonyl sulphide COS, inorganic sulphur and most importantly organic sulphur.
- The presence of sulphur compounds could be explained by **thermal reaction** between elemental sulphur, or H₂S and the other organic components of the sediments including HCBN.

Disadvantages of Sulphur components:

- 1- Corrosion of the metallic parts of the internal combustion engine.
- 2- Reduce octane number.
- 3- Reduce oxidation resistance.
- 4- Causes solid depositions.

The Sulphur content of crude oils varies from less than 0.05 to more than 10 wt%.

✓ Oxygen Compounds

- The oxygen content of crude oil is usually less than 2 wt%.
- The presence of such compounds causes the crude to be acidic with consequent processing problems such as corrosion.

Alcohols Methyl alcohol CH₃OH Phenol C₆H₅OH Ethers Dimethyl ether CH₃OCH₃ Diphenyl ether C₆H₅OC₆H₅ Carboxylic acids Acetic acid CH₃CO₂H Benzoic acid C₆H₅CO₂H Esters CH₃CO₂CH₂CH₃ Ethyl acetate Ketones Acetone CH₃COCH₃ Furans сн=сносн=сн Furan

✓ Nitrogen Compounds

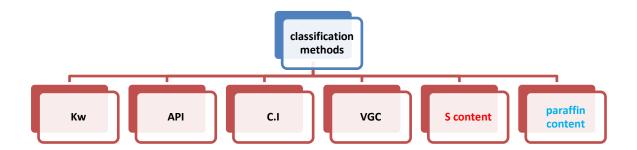
- Crude oils contain very low amounts of nitrogen compounds (0.1-0.9 wt%)
- In general, the more asphaltic the oil, the higher its nitrogen content.
- Nitrogen compounds are more stable than sulphur compounds and therefore are harder to remove.
- Nitrogen compounds can be responsible for the poisoning of a cracking catalyst, increases carbon residue, decreases API and they also contribute to gum formation in finished products.

✓ Metallic components:

- 1- Metals (Iron Fe, Nickel Ni, Vanadium V, Cadmium Cd, Magnesium Mg, and Calcium Ca).
- 3- Salt metallic (Na⁺ and Ba²⁺).

Disadvantages:

Decrease catalyst activity, coke formation, reduce the yield of the gasoline, ash deposits, and Corrosion.


✓ Brine water :

Water molecules are dispersed in crude oil with extremely high concentrations of dissolved salt ions nearly **300-300.000** ppm. The ions are divided into two types:

- 1- Positive ions (Na⁺, Ba²⁺, Mg²⁺, Al³⁺...etc.)
- 2- Negative ions (Cl⁻, Br⁻, SO₄-², Γ...etc.)

note: These ions are removed in desalting operations. More important are metals which are present in form of oil-soluble organometallic compounds.

Crude Oil Classification

A- Watson or UOP characterization factor (Kw):

Watson characterization factor (Kw) can be calculated from the following equation:

$$K_w = \frac{\sqrt[3]{MeABP}}{Sp. Gr @ 60°F} \dots 1$$

- 1- $K_w = 12.15 13$ paraffinic base crude oil
- 2- $K_w = 11.1 12.0$ mixed (paraffinic and naphthenic) base crude oil
- 3- $K_w = 10 11.0$ naphthenic (asphaltic) base crude oil

Kw = Watson characterization factor

MeABP = mean average boiling point temperature in Rankin = $VABP - \Delta$

VABP = volume average boiling point temperatures in °F.

Sp.gr. $60/60^{\circ}$ F = Specific Gravity at 15° C (60 °F)

$$Sp. Gr @ 60^{\circ}F = \frac{141.5}{API + 131.5} \dots 2$$

B- (API gravity)

API: American Petroleum Institute

$$API = \frac{141.5}{Sp. Gr. @ 60°F} - 131.5 \dots 3$$

At atmospheric (1 atm), the crude oil classification will be as follows:

- 1- API gravity > 38 light crude oil
- 2- API gravity = 33 38 intermediate crude oil
- 3- API gravity < 33 heavy crude oil

C- Correlation Index (C.I)

This method based on the percentages of various hydrocarbons types in the crude oil which are classified into paraffinic or aromatic according to following

$$C.I = 473.7 SG at 60F - 456.8 + \frac{48680}{ABP \circ K} \dots 4$$

ABP: average boiling point in Kelvin

The crude oil can be classified as follow as:

- 1. C.I. = $\frac{0}{0}$ (paraffinic (n-Pf & iso-Pf) base crude oil
- 2. C.I = 0-15 (predominance of n-paraffinic crude oil)
- 3. C.I = 15 50 (paraffinic and aromatic mixture)
- 4. C.I > 50 (aromatic crude oil)
- 5. C.I = 100 (benzene)

D- Classification by Viscosity-Gravity Constant

Indicator of the hydrocarbon composition of a crude oil.

VGC is calculated from one of the following equations, depending on the temperature at which viscosity is determined

$$VGC = \frac{10 \, Sp.Gr - 1.0752 \, \log(v_{38} - 38)}{10 - \log(v_{38} - 38)} \dots 5$$

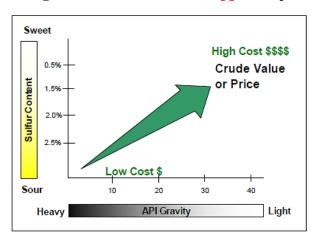
For heavy oils where low-temperature viscosity is difficult to measure, an alternative formula are used in which the 99°C (210°F) saybolt viscosity is used.

$$VGC = \frac{Sp.Gr - 0.24 - 0.022 \log(v_{99} - 35.5)}{0.755} \dots 6$$

The Saybolt universal second (SUS) is the time in seconds required for the flow of 60 ml of petroleum from a container, at a constant temperature, through a calibrated orifice.

VGC:

0.70-0.79 paraffinic hydrocarbon.


0.80-0.90 naphthenic base.

0.91-1.31 aromatic base.

Dr. Omar Alaziz

E - Sulfur Content

- > Sweet crude oil: If crude has less than 0.5% (5000 ppm) sulphur content.
- Sour crude oil: If crude has greater than 2.5% (25000 ppm) sulphur.

F- Technological Classification (paraffin content)

- Low paraffinic oil containing less than 1.5% of paraffins. This type of oil can be used for production of jet and winter diesel fuels without deparaffinization.
- Medium paraffinic oil containing over 1.5% and fewer than 6% of paraffins. This type of oil can be used for production of jet and summer diesel fuels without deparaffinization.
- **High paraffinic oil** containing over 6% of paraffins. This type of oil can be used for production of diesel and jet fuels only after deparaffinization.